
Noname manuscript No.
(will be inserted by the editor)

Large-scale Bisample Learning on ID vs. Spot Face Recognition

Xiangyu Zhu∗ · Hao Liu∗ · Zhen Lei · Hailin Shi · Fan Yang · Dong

Yi · Guojun Qi · Stan Z. Li

Received: date / Accepted: date

Abstract In real-world face recognition applications,

there is a tremendous amount of data with two images

for each person. One is an ID photo for face enrollment,

and the other is a probe photo captured on spot. Most

existing methods are designed for training data with

limited breadth (a relatively small number of classes)

and sufficient depth (many samples for each class). They

would meet great challenges on ID vs. Spot (IvS) data,

including the under-represented intra-class variations

and an excessive demand on computing devices. In

this paper, we propose a deep learning based large-

scale bisample learning (LBL) method for IvS face

recognition. To tackle the bisample problem with only

two samples for each class, a classification-verification-

classification (CVC) training strategy is proposed to

progressively enhance the IvS performance. Besides, a
dominant prototype softmax (DP-softmax) is incorpo-

rated to make the deep learning scalable on large-scale

classes. We conduct LBL on a IvS face dataset with more

than two million identities. Experimental results show

the proposed method achieves superior performance to

Xiangyu Zhu, Hao Liu, Zhen Lei, Hailin Shi and Stan Z. Li
Center for Biometrics and Security Research & National
Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences.
E-mail: {xiangyu.zhu,hao.liu2016,zlei,hailin.shi,szli}@nlpr.ia.ac.cn

Fan Yang
College of Software, Beihang University.
E-mail: fanyang@buaa.edu.cn

Dong Yi
DAMO Academy, Alibaba Group.
E-mail: yidong.yd@alibaba-inc.com

Guojun Qi
HUAWEI Cloud, USA.
E-mail: guojunq@gmail.com

∗denotes equal contribution

Fig. 1: The ID vs. Spot (IvS) data, each identity has

one ID photo and one spot photo.

previous ones, validating the effectiveness of LBL on

IvS face recognition.

Keywords Face Recognition · ID vs. Spot · Large-scale

Bisample Learning · Dominant Prototype Softmax

1 Introduction

Face recognition has witnessed dramatic improvements

in recent years, primarily due to the advances in net-

work architectures [1,2,3,4,5], training strategies [6,7,

8,9,10,11] and a large amount of face data [12,13,14,

15]. Recent methods mainly focus on face recognition

in the wild, where the training datasets are collected

from internet by web searching engines [12] or electron-

ic album applications [13]. Most of wild datasets like

CASIA-Webface [12], Ms-Celeb-1M [14] and VGG2 [15]

are well-posed, where they have a limited number of

classes (less than 100, 000) and adequate samples per

class (more than 20). However, this is not the case in

many real-world face data, like the ID vs. Spot (IvS)

2 Xiangyu Zhu∗ et al.

face recognition, which aims to match unconstrained

spot photos with constrained ID photos, see Fig. 1 for

example. Compared with wild datasets, IvS datasets

present threefold challenges below.

1. Heterogeneity: ID and spot photos are taken in

different environments. The ID photos are taken in

constrained environments with clean background, in

frontal pose, normal illumination and neutral expres-

sion. The spot photos are taken in unconstrained en-

vironments. There are pose, lighting, expression and

occlusion (e.g., glasses, haircut, scarf etc.) variations.

Moreover, there may be a large age gap between

ID and spot photos since ID photos are updated

every 10− 20 years. This heterogeneity increases the

difficulty of IvS face recognition.

2. Bisample Data: Usually, IvS training data is col-

lected by face authentication systems. When a user

passes the authentication system, a pair of his photos
will be recorded, one ID photo from his ID card and

the other spot photo taken online. As a result, there

are only two samples available for each subject. The

intra-variations of classes are not well represented,
making the discriminative training on bisample data

a more challenging problem.

3. Large-scale Classes: IvS data is collected by prac-

tical systems, where there can be as many as million

or even hundreds of million identities. How to perfor-

m deep learning on such massive classes with limited

GPU devices is worth studying.

The above three characteristics pose great challenges

for IvS face recognition. In real-world applications, the

high recognition rate at low false acceptance rate is

demanded. To this end, the large margins between

inter-class samples and the compactness of intra-class

samples in the feature space are necessary. However,

since there are only two samples for each subject, it is

difficult to describe the intra-variations in the training

phase so that the derived feature space would not be

discriminative enough. In addition, there is a huge

number of classes. It is a great challenge to explore

the discriminative information among these classes with

limited GPU devices. Taking deep learning with softmax

as an example, there need to be millions of prototypes

in the GPU memory, which is infeasible for most of

computing devices.

In this paper, we cast the deep learning on IvS data

as a Large-scale Bisample Learning (LBL) problem,

where the training data has a huge number of classes and

each class has only one positive pair. To enhance existing

training strategies to handle the LBL problem, two

challenges must be resolved: The weak intra-variations

caused by bisample data and the model training s-

calability caused by large-scale classes. To deal with

weak intra-variations, we propose a progressive model

transferring method, named Classification-Verification-

Classification (CVC). We pre-train a model on web-

collected data by classification and finetune it on IvS

data by verification to get a good initialization. Then

we perform large-scale classification to obtain the final

IvS model.

To improve scalability for model training, we adopt

a prototype selection strategy in the last stage of CVC

to scale up softmax-like losses to any number of classes.

Specifically, we observe that the gradients of softmax

are dominated by a small fraction of classes and the

dominant classes can be effectively identified by the class

proximities. Based on this, we build a dominant queue

for each class to record its similar classes, from which we

can select the most dominant classes to participate in

the classification. The new softmax can perform effective

training with only 0.15% classes, significantly reducing

the demand for computing devices.

We evaluate our method on a real-world IvS dataset

and show it reaches the state-of-the-art performance

with limited computing devices (4 TITANX GPU). Be-

sides, we release a Public-IvS dataset of 1262 identities

for open evaluation. Moreover, to make our work repro-

ducible, we devise a new protocol Megaface-bisample

to mimic the large-scale bisample learning task. To our

knowledge, it is the first investigation into training deep

neural networks on large-scale bisample face data.

2 Related Works

In this section, we review the deep learning based face

recognition and discuss two related problems about the

LBL task: (1) Learning with insufficient data and (2)

Large-scale classification.

2.1 Deep Learning based Face Recognition

Recently there are two schemes to train deep models

for face recognition: classification and verification. The

classification scheme considers each identity as a unique

category and classifies each sample into one of the classes.

During testing, the classification layer is removed and

the top-level feature is regarded as the face represen-

tation [16]. The most popular loss is softmax [16,6,17].

Based on that, the center loss [18] proposes to learn

the class-specific feature centers to make features more

compact in the embedding space. The L2-softmax [19]

adds a L2-constraint on features to promote the under-

represented classes. The normface [20] normalizes both

features and prototypes to make the training and testing

Large-scale Bisample Learning on ID vs. Spot Face Recognition 3

phases closer. Recently, enhancing margins between dif-

ferent classes is found to be effective in improving feature

discrimination, including large-margin softmax [21], A-

softmax [22], GA-softmax [23] and AM-softmax [24].

Benefiting from the prototypes in the classification

layer, the scheme can distinguish a sample from all

the other classes, leading to fast convergence and good

generalization ability [20].

On the other hand, the verification scheme optimizes

distances between samples. Within a mini-batch, the

contrastive loss [7] optimizes pairwise distances in the
feature space to reduce intra-class distances and enlarge

inter-class distances. The triplet loss [8] makes up a

triplet consisting of an anchor, a positive sample and a

negative sample. The loss aims to separate the positive

pair from the negative pair by a distance margin. The

lifted structured loss [25] considers all the pairwise

distances within the mini-batch and select the best

positives and negatives. The N-pairs loss [26] optimizes

each positive pair against all the related negative pairs

following a local softmax formulation. Besides, hard

negative mining is widely adopted to remove the easy

negative pairs to ensure fast convergence [8]. More

recently, [27] presents a GAN-based method to delib-

erately generate hard triplet samples to improve the

efficiency and effectiveness in training triplet losses. The

performance of the verification scheme depends on the

number of pairs generated in one mini-batch [25], which

is determined by the batch size. However, increasing

batch size, meaning that expanding GPU memory, is

very expensive. To reduce the cost of GPU memory,

smart sampling [28] selects valuable pairs in the data

layer instead of the feature layer. The method memorizes
the pairs having large losses and selects them with higher

probabilities afterwards [28,9,29].

Most contemporary face recognition methods are

based on wild datasets, e.g., CASIA-Webface [12], Ms-

Celeb-1M [14], MF2 [13] and VGG2 [15]. These well-
posed datasets have a limited number of identities and

sufficient samples per identity. However, this is not the

case in IvS datasets. Table 1 gives a brief comparison

between wild and IvS datasets. Our CASIA-IvS has

more than 2 million identities but only two samples per

identity, on which existing well-studied methods cannot

work well any more. Exploring IvS-specific training

strategies is necessary.

2.2 Learning with Insufficient Data

Low-shot learning intends to recognize new classes by

few samples [32]. Generally, low-shot learning transfers

the knowledge from a well-posed source domain to

the low-shot target domain. Siamese net [33] trains

a siamese CNN by same-or-different classification on

the source domain and extracts the deep features for

nearest neighbour matching in the target domain. MAN-

N [34,35,36] memorizes the features of examples in the

source domain to help predict the under-labeled classes.

Model regression [37,38] directly transfers the neural

network weights across domains. The L2-regularization

on features [39,40,41] can prevent the network from

ignoring low-shot classes. Besides, virtual sample gener-

ation [40,42] and semi-supervised samples [43] are found

effective in promoting low-shot classes. Although both
low-shot learning and bisample learning intend to learn

a concept with insufficient samples, they differ in that

low-shot learning is close-set classification where the

testing samples belong to the low-shot classes, while

bisample learning is open-set classification that the

testing samples definitely belong to unseen classes.

Long-tail problem refers to the situation that only

a limited number of classes appear frequently, while

most of the others remain far less existing. Deep models

trained on long-tailed data tend to ignore the classes in

the tail. To resolve the problem, [44] retrieves more sam-

ples from the tail classes. [45] makes samples uniformly

distributed by random sampling. [31] proposes a range

loss to balance the rich and poor classes, where the

largest intra-class distance is reduced and the shortest

class-center distance is enlarged.

2.3 Large-scale Classification

Large-scale classification aims to perform classification

on a vast number of classes, where the class number

reaches millions or tens of millions. This task presents a

great problem for deep learning: the common softmax

loss can not be adopted due to the prohibitive parameter

size and computation cost. The Megaface challenge [13]

proposes four methods for training models on 670k

identities. Model-A trains the network on random 20, 000

identities via softmax. Model-B finetunes Model-A on all

the 670k identities with the triplet loss. Model-C adopts

rotating softmax that randomly selects 2, 600 identities

every 20 epoches. After each rotation the parameters

in the softmax layer are randomly initialized. Model-D

further triplet-finetunes Model-C on all the identities.

Beyond the computer vision, extreme multi-label

learning [46] and noise contrastive estimation [47] are

related to large-scale classification. Extreme Multi-

label Learning learns a classifier to tag a sample with

the most relevant label from a large label set [46]. It faces

the same challenge as LBL that training a multi-class

classifier is computationally prohibitive when the class

number is extremely large. To tackle this problem, the

tree based methods [48,49,50] learn a label hierarchy

4 Xiangyu Zhu∗ et al.

Dataset Identities Samples/ID Scenarios Descriptions

CASIA-Webface [12] 10, 575 46.7 wild Celebrity photos by web-searching
Ms-Celeb-1M [14] 98, 685/79, 077 50.7/63.8 wild Celebrity photos by web-searching

MF2 [13] 657, 559/90, 399 6.8/24.7 wild User photos of electronic album
VGG2 [15] 9, 131 362.6 wild Celebrity photos by web-searching

CASIA-IvS 2, 578, 178 2 IvS ID and spot photos of the masses

Table 1: Description of face recognition datasets. We clean Ms-Celeb-1M and MF2 due to their low purities [30],

and cut the identities whose samples are smaller than 10 to balance the long tail distribution [31]. The numbers

after / indicate the information after cleaning.

as follows: The root node contains the entire label set
and a node partitioning formulation is optimized to

determine which labels belong to the left child and

which to the right. Nodes are recursively partitioned

until each leaf contains a small number of labels. Finally

a base classifier identifies the samples in only one leaf

node. Although tree based methods reduce the class

number for each classifier, the prediction error made

at top-level cannot be corrected at lower levels due

to its cascading architecture [51]. On the other hand,

the embedding based methods [52,53,54] assume the

label matrix [46], where each row is a {0, 1} label vector

of a sample, is low rank and the label vectors can be

projected onto a low-dimensional linear subspace. As a

result, the extreme classification task can be converted to

a low-dimensional regression problem. However, the low

rank assumption indicates that the samples concentrate

on a small number of active classes, which is not the case

in IvS data where the samples are evenly distributed

among identities.

In softmax, computing the probabilities requires nor-
malizing over the entire class set, which is the major cost

in large-scale classification. Noise Contrastive Esti-

mation (NCE) [47] provides an approximate method

to estimate the probabilistic distribution without the

normalization constant. Its basic idea is training a logis-

tic regression classifier to discriminate samples from data

distribution and noise distribution, so that the density es-

timation is reduced to probabilistic binary classification.

Although NCE has been successfully applied in language

models [55,56,57], recent face recognition tasks [7,16]

have shown that promoting the contrast among classes is

crucial in training discriminative models. Turning multi-

class classification to binary logistic regression may lose

inter-class information and get inferior performance.

3 Large-scale Bisample Learning

The proposed method contains a complete pipeline for

deep learning on large-scale bisample data. We begin

by discussing of the classification and the verification
schemes, showing how their pros and cons motivate

the proposed methods. Then we present the way to

train deep neural networks on bisample data. Finally

we develop a dominant prototype softmax to perform

2-million-way classification in a scalable fasion. Fig. 2

shows an overview of our method.

3.1 Problem Formulation and Motivation

Currently there are two schemes for training deep neural

networks, i.e., verification and classification. The veri-

fication scheme optimizes sample-to-sample distances,

such as the contrastive loss [7] and the triplet loss [8]. In

each iteration, it performs local optimization within a

mini-batch by making positive pairs close and negative

pairs far away. Besides, the mining strategy [8] filters out

easy pairs for fast convergence. On the other hand, the

classification scheme regards each identity as a unique

class and trains the network as a N -way classification

problem, such as softmax [16] and A-softmax[22]. Com-

pared with the verification scheme, the classification

scheme performs global optimization by identifying each

sample into one of the N classes.

In this paper, we motivate our method by comparing

classification and verification. Interestingly, if we formu-

late the loss function for a whole mini-batch, we can

unify the two schemes in a pair matching and weighting

framework. First, the verification scheme extracts fea-

tures with a neural network and makes pairs between

deep features. Taking contrastive loss [7] as an example:

Lver(X) = −
M∑
j=1

M∑
k=j+1

NM(xT
j xk, yjk) xT

j xk, with

(1)

NM(xT
j xk, yjk) =

1 if yjk = 1

−1 if yjk = 0 and xT
j xk ≥ τ

0 if yjk = 0 and xT
j xk < τ

Large-scale Bisample Learning on ID vs. Spot Face Recognition 5

Fig. 2: Overview of the large-scale bisample learning (LBL). LBL adopts a classification-verification-classification

(CVC) training strategy, which has three stages: The first stage, pre-learning, is training the network from scratch

on a wild dataset by a classification loss. The second stage, transfer learning, is finetuning the network on the IvS

dataset with a verification loss. The last stage, fine-grained learning, is performing large-scale classification on the

IvS dataset with a new dominant prototype softmax.

where x is the D dimensional deep feature extracted by

the neural network; X = [x1, . . . ,xM] are the features

in the mini-batch where M is the batch size; yjk = 1 if

xj and xk belong to the same class and yjk = 0 if not;

NM(·) is the hard negative mining that filters out easy

negative pairs with a threshold τ . We can see that the

contrastive loss makes pairs within deep features X and

assigns {0, 1} weights to them.

In contrast, the classification scheme makes pairs

between features and prototypes. Taking the softmax

loss [7] as an example:

Lcls(W,X) = −
M∑
j=1

log
(e

wT

y(j)xj∑N
i=1 e

wT
i xj

)
, (2)

where W = [w1, . . . ,wN] is the prototype matrix in the

softmax layer where N is the number of classes and y(j)

is the label of xj . Its derivatives to a prototype wi and

a feature xj are:

∂Lcls

∂xj
= −

N∑
i=1

(1{y(j) == i} − pij)wi (3)

∂Lcls

∂wi
= −

M∑
j=1

(1{y(j) == i} − pij)xj

with pij =
ew

T
i xj∑N

k=1 e
wT

k xj
, (4)

where 1(·) is the indicator function which is 1 when

the statement is true and 0 otherwise, and pij is the

probability that xj belongs to the ith class. Given

that network training only concerns the gradients back-

propagated, we can construct a dummy softmax loss

6 Xiangyu Zhu∗ et al.

sharing the same gradients with Equ. 2:

Ldum(W,X) = −
M∑
j=1

N∑
i=1

P(p̃ij , i, j)w
T
i xj , with (5)

P(p̃ij , i, j) =

{
1− p̃ij if y(j) = i

−p̃ij if y(j) 6= i

where p̃ij is computed as pij in Equ. 4 and considered

as a constant. Lcls and Ldum are equivalent in network

training since they produce the same back-propagated

signals. Obviously Ldum makes pairs between W and

X, and assigns a weight to each pair (wi,xj) by the

probability pij . The negative pairs with higher probabil-

ities and the positive pairs with lower probabilities have

larger weights and yield louder signals during training.
Comparing Equ. 5 and Equ. 1, we can conclude that

both classification and verification follow the same pair

matching and weighting framework. The only differences

lie in the pairing candidates (features with prototypes
vs. within features) and the weighting methods (soft

weight vs. hard weight). Recent works have empirically

observed that increasing the number of pairs always

delivers faster convergence and better discriminative

power, hence the loss functions involving more pairs are

preferred. Within a mini-batch with M as the batch size

and N as the class number, a classification loss makes

N ×M pairs in Equ. 5 and a verification loss makes

M(M − 1)/2 pairs in Equ. 1. In real implementation

with limited GPU memory, N �M always holds. For

example, when training ResNet64 [21] with a TITAN-

X GPU, the batch size M is about 50 and the class

number N easily reaches tens or even hundreds of

thousands. With more orders of magnitude pairs, the

classification scheme is expected to acquire more

discriminative features, which has been shown in the

state-of-the-art methods [21,23,24,58]. However, two

challenges make classification infeasible on IvS data.

First, the classification scheme has difficulty to converge

on bisample data due to the weak intra-variations, which

is demonstrated in our experiments. Second, the clas-

sification scheme suffers from weak scalability to large-

scale classes due to the limited GPU memory. Directly

performing 2-million-way classification with two samples

per class is infeasible for current optimization methods

and computing devices.

In this paper, we motivate our method to make the

classification scheme feasible on large-scale bisample

data. To this end, its robustness to bisample data and

scalability to large-scale classes should be enhanced.

First, we find the classification scheme convergent on

bisample data only if it is well initialized. So that we pro-

pose a CVC training strategy to initialize the model and

construct the prototypes for the classification scheme.

Second, we propose a prototype selection strategy to

scale up the classification scheme to any number of

classes. With the improvements, we achieve superior

performance to existing methods.

3.2 Bisample Learning

It has been observed that when training data is in-

sufficient, transferring knowledge from related tasks is

better than directly training on the target domain [33].

Inspired by this, we regard the well-posed wild data as

the source domain and the IvS data as the target domain.

A classification-verification-classification (CVC) training

strategy is proposed to transfer the knowledge from wild

scenarios to IvS scenarios and boost the performance by

large-scale classification. As shown in Fig. 2, the CVC

involves three stages:

1. Pre-learning (Classification): We first train the

deep model on a wild dataset to get a good initial-

ization for general face recognition. With a limit-

ed number of classes (less than 100, 000), we can

adopt a classification loss like softmax [16] and A-

softmax [22] to perform one-vs-all optimization. The

trained model performs well in wild scenarios but

terribly in IvS scenarios due to the large bias [59].

Nevertheless, the model has learned basic knowledge

about human faces and will not be puzzled by IvS

data.

2. Transfer Learning (Verification): Since the ver-

ification scheme only concerns a small number of

classes and just needs two samples per class to

optimize intra-class distances in each iteration. We

believe verification is robust to large-scale bisample

data. In this stage, we adopt the verification scheme

to transfer the face knowledge from wild scenarios

to IvS scenarios. Specifically, we remove the clas-

sification layer and finetune the model on the IvS

dataset with a verification loss like contrastive [7] or

triplet [8]. Benefiting from the initialization from the

previous stage and the robustness to bisample data of

the verification scheme, we can successfully optimize

the loss function and provide a good initialization

for the final large-scale classification.

3. Fine-grained Learning (Classification): We con-

struct a classification layer on the top of the network

and conduct classification with 2 million classes on

the IvS dataset. A novel dominant prototype softmax

is adopted to select a small number of dominant

classes to participate into the classification in each

iteration. The new softmax can effectively and effi-

ciently perform large-scale classification and further

Large-scale Bisample Learning on ID vs. Spot Face Recognition 7

boost the performance, finally achieves satisfactory

recognition accuracy in IvS scenarios.

The key in CVC is that the knowledge transfer-

ring should be smooth. We find after the first stage,

the large-scale classification has been able to converge.

However, the loss descends slowly and the optimization

gets stuck into a bad local optima. Considering that

the verification scheme has good robustness to data

distribution, we bridge the two classification stages with

a verification stage, which gives a better initialization for

large-scale classification and finally achieves much better

performance. Although classification followed by veri-

fication [60] and the joint identification-verification [7]
have been applied in training web-face models, the two

schemes are applied on the same dataset. While the

first two stages of CVC are applied on different datasets

with different scenarios, which acts as a knowledge-

transferring role.

To perform classification in the final stage of CVC,

we must construct the absent classification layer, which

contains the prototype for each class. Considering pro-

totypes serve as the class proxies, to which the deep

features will be optimized, we construct the prototype

of a class by the features belonging to it. Specifically,

we try two kinds of prototypes: ID-prototype and avg-

prototype. Suppose xid
i and xspot

i are the deep features

of the ID and spot photos of the ith identity, we set

the ID-prototype wid
i = xid

i and the avg-prototype
wavg

i = (xid
i + xspot

i)/2. Intuitively, the ID-prototype

enforces the spot feature to approach the more reliable

ID feature and the avg-prototype makes the two features

approach their centroid. Our experiments show that

which kind of prototype is better depends on the loss
function.

In the next section, we will introduce how to perform

large-scale classification in the final stage of CVC.

3.3 Large-scale Classification

3.3.1 Random Prototype Softmax

With the well initialized network and prototypes, the

only problem remained is to scale up the classification

scheme to massive classes. If we directly perform clas-

sification on 2 million classes, the massive prototypes

will take 1/3 GPU memory (4GB of the 12GB) and
dramatically increase the training time due to their

numerous parameters.

We aim to improve scalability by reducing the cost

of large-scale classification. As shown in Fig. 3, we

select a fraction of prototypes to participate in the

classification in each iteration. In the pair-matching

formulation of softmax (Equ. 5), given one mini-batch

X = [x1, . . . ,xM] where samples have different labels,

all the prototypes W = [w1, . . . ,wN] can be divided

into M positive prototypes Wpos and the rest negative

prototypes Wneg. Each prototype in Wpos has a mate

in X to make up a positive pair, while the prototypes

in Wneg do not share class with any of X and only

make up negative pairs. Given that M � (N −M), it is

unnecessary to put the whole Wneg into GPU memory

since negative pairs are redundant. Based on this, we

propose a naive solution called Random Prototype

Softmax (RP-softmax). The RP-softmax stores the

full prototype matrix W in the memory. In each itera-

tion, it first constructs a temporary prototype matrix

Witer = [Wpos,Ŵneg], where Ŵneg has Niter − M

randomly selected prototypes from Wneg and Niter

is the number of selected prototypes. Then Witer is

copied into GPU for training and updated to W+
iter.

Finally, W+
iter and W are synchronized by replacing the

selected prototypes with the updated ones. Overall, the

prototype selection and updating procedure is listed in

Algorithm 1.

Algorithm 1: Random Prototype Softmax

Input : Prototype matrix: W = [w1, . . . ,wN]
Feature matrix: X = [x1, . . . ,xM]
Number of selected classes Niter

Output : Updated prototype matrix
1 Initialize selected class set L = ∅
2 for each feature xj in X do
3 Get the label y(j) of xj

4 L.insert(y(j))

5 end
6 while L.size < Niter do
7 randomly select a label y(r)

8 L.insert(y(r))

9 end
10 for i = 1 . . . Niter do
11 Witer[i, :] = W[Li, :], Li is the member of L
12 end

13 Training with Witer and X, getting updated W+
iter

14 for i = 1 . . . Niter do

15 W[Li, :] = W+
iter[i, :]

16 end

The hyper parameter Niter plays a key role in RP-

softmax. Larger Niter brings more negative pairs and

provides richer inter-variation information. However, in-

creasingNiter is not cost free. Besides the time-consuming

large matrix multiplication, the softmax layer has to

get blocked until Witer is copied into GPU. Sometimes

the waiting time exceeds the forward propagation time.

Moreover, increasing Niter squeezes the batch size and

degrades the data-driven layers like batch-normalization.

8 Xiangyu Zhu∗ et al.

Fig. 3: Overview of large-scale classification.

As a result, Niter is set empirically to balance the

performance and the training time. In our experiments,

with Niter = 100, 000 the RP-softmax significantly
improves the performance in IvS scenarios.

3.3.2 Dominant Prototype Softmax

Although RP-softmax makes it possible to perform large-

scale classification, it is still inefficient due to its blind

prototype selection. In this section, we show that the

quality not the quantity really matters in prototype

selection. We begin with the demonstration that in each

iteration, only a small fraction of negative prototypes
generate strong gradients.

In Equ. 3, a negative prototype wi contributes to

the back-propagated gradient by pijwi, whose norm is

pij‖wi‖. Usually, we restrict ‖wi‖ to one [22] and the

norm will be pij , which can measure the impact of wi

to the training process. In this paper, with a mini-batch

X = [x1, . . . ,xM], we define the energy of a negative

prototype as:

Eneg(wi) =

M∑
j=1

pij , (6)

where pij is the probability that xj belongs to class

i. Note that none of X has the label i since wi is

a negative prototype. To analyze whether the energy

is concentrated on a small fraction of prototypes, we

further define the top-K cumulative energy as:

CEK =

∑
wi∈TK Eneg(wi)∑

wi∈Wneg
Eneg(wi)

, (7)

where Wneg is the set of negative prototypes and TK is

the set of K negative prototypes with the largest energy.

A large CEK with small K denotes that the energy of
negative prototypes are highly concentrated. We plot

the CEK along the training process in Fig. 4. It can be

seen that in the beginning the top-5000 possesses 92.71%

of energy. As the training proceeds, the energy becomes

more and more concentrated. In the middle and end of

the training process, the energy of top-5000 is increased
to 96.09% and 98.79%. These results indicate that only a

small fraction of prototypes can produce large gradients

to affect training. We call these negative prototypes with

large energy as dominant prototypes.

In real implementation, given a batch of features,

how can we know the most dominant prototypes before

we compute the probabilities in softmax? In this paper,

we assume that if two identities have similar ID features,

their prototypes and features are likely to make hard

negative pairs. Based on this, we propose the Dominant

Prototype Softmax (DP-softmax). The basic idea

is selecting prototypes from a set of dominant queues

and updating the queues by the softmax predications.

The procedure is detailed as follows:

Queue Initialization: For each class i, we define

the K-Nearest ClassesNC(i)K as the top-K classes having

the nearest ID features with i. Before training, we build

an approximate nearest neighbor (ANN) graph by ID

features and get the NC(i)K for each class. Then we

construct a dominant queue Qi and a candidate set Ci
for each class. The Qi is initialized by NC(i)100 and its

members are sorted by the distances of ID features to i.

The Ci is set to NC(i)300. Note that Qi ⊆ Ci.

Large-scale Bisample Learning on ID vs. Spot Face Recognition 9

Fig. 4: The top-K cumulate energy of negative proto-

types (CEK) for a mini-batch, in the beginning, middle

(100, 000 iterations) and end (200, 000 iterations) of the

training process. The batch size is 50 and the number

of classes is 2, 578, 178. The curves come from averaging
CEK of 5, 000 mini-batches.

Prototype Selection: After training begins, in

each iteration we need to select prototypes for the mini-
batch X = [x1, . . . ,xM]. First we select their positive

prototypes Wpos = [wy(1) , . . . ,wy(M)] where y(j) is the

label of xj . Second, for each feature xj we select the

prototypes of the classes in its dominant queue that

Wqu
j = [wq|q ∈ Qy(j)] and the full negative prototypes

are Ŵneg = [Wqu
j , . . . ,Wqu

M]. Thirdly, we remove the

repeated prototypes and randomly select negative proto-

types into Ŵneg until a preset number is reached. Finally

Wpos and Ŵneg constitute the temporary prototype

matrix Witer in this iteration and are copied into GPU

for training. Algorithm 2 summarizes the DP-softmax.

Queue Updating: After training in each iteration,

we can update the dominant queues by the predictions

of softmax. For a feature xj , its highest activated class

h provides valuable information: First if h = y(j) then
it is a successful prediction and there is nothing to

update. Second if h 6= y(j) but h ∈ Qy(j) , then this is

a mis-prediction but the wrong-matched class is still

in the dominant queue. Hence we need not to update

Qy(j) . Thirdly, if h 6= y(j) and h 6∈ Qy(j) but h ∈ Cy(j) ,

it means the class neighborhood has changed as the

training proceeds. Therefore, we push h into Qy(j) and

pop the class that is the most dissimilar to y(j). Finally
if h 6= y(j) and h is not in Qy(j) or Cy(j) , it means h and

y(j) have dissimilar ID features in the beginning but

become close at this time. This case is mostly caused

by the mislabelled or low-quality spot photo of h which

Algorithm 2: Dominant Prototype Softmax

Input : Prototype matrix: W = [w1, . . . ,wN]
Feature matrix: X = [x1, . . . ,xM]
Number of selected classes Niter

Dominant Queues: Qi, i = 1, . . . , N
Output : Updated prototype matrix

1 Initialize selected class set L = ∅
2 for each feature xj in X do
3 Get the label y(j) of xj

4 L.insert(y(j))
5 for each class k in Qy(j) do
6 L.insert(k)
7 end

8 end
9 while L.size < Niter do

10 randomly select a label y(r)

11 L.insert(y(r))

12 end
13 for i = 1 . . . Niter do
14 Witer[i, :] = W[Li, :], Li is the member of L
15 end

16 Training with Witer and X, getting updated W+
iter

17 for i = 1 . . . Niter do

18 W[Li, :] = W+
iter[i, :]

19 end

misdirects its prototype, as shown in Fig. 5. Therefore,

we do not update Qy(j) since h is a noisy label.

(a) Mislabelling (b) Low Quality

Fig. 5: The refused mis-predicted class. When a mis-

predicted class is refused to enter the dominant queue,

there are always something wrong in its spot photo,

including (a) mislabelling and (b) low quality.

The whole prototype selecting and queue updating

operations can be done in real time. Compared with the

RP-softmax, the DP-softmax significantly improves the

quality and reduce the quantity of prototypes, leading

to faster training and better performance.

Since the prototypes are saved in memory, which can

easily hold tens of millions of prototypes, the dominant

prototype selection scales up the classification scheme

to any number of classes. Besides, when new training

data come, the prototype matrix W can be extended by

the ID features of the new identities. Then the network

can be finetuned on the whole training data.

10 Xiangyu Zhu∗ et al.

4 Experiments

In this section, the proposed large-scale bisample learn-

ing (LBL) is systematically evaluated. We first analyze

the CVC training strategy. Then we explore how dif-

ferent prototype selection methods affect the final per-

formance. Finally we conduct comparison experiments

on three datasets including CASIA-IvS-Test, Public-IvS

and Megaface-bisample.

4.1 Datasets

Ms-Celeb-1M: The Ms-Celeb-1M [14] is one of the

largest wild dataset containing 98, 685 celebrities and 10

million images. The list of [30] is adopted to clean the

noisy labels, resulting in 79, 077 identities and 5 million
images.

CASIA-IvS: The CASIA-IvS dataset is collected

for IvS face recognition. The training set CASIA-IvS-

Train contains 2, 578, 178 identities, each having two

images. One image is the ID photo from the ID card,

which is taken with uniform background, in frontal

pose, normal illumination and neutral expression. The

other is the spot photo taken by on-site devices, with

variations in pose, expression, illumination, occlusion

and resolution, as shown in Fig. 6. The test set CASIA-

IvS-Test contains 4, 000 identities and 8, 000 images,

which are checked manually to clean the noisy labels

and ensure there is no identity overlap between training

and test sets. During testing, all the ID photos and spot

photos are paired, generating 4, 000 positive pairs and

nearly 16 million negative pairs.

Fig. 6: Example images in CASIA-IvS.

Public-IvS: An IvS test dataset is released for open

evaluation. We found some public characters, such as

politicians, teachers and researchers, had their ID photos

on BaiduBaike [61] and official pages. We recorded

their names and collected their spot photos on the

web. Afterwards, we cleaned the dataset manually and

removed the profile-view images. The final Public-IvS

dataset has 1, 262 identities and 5, 507 images, each

identity having one ID photo and 1 to 10 spot photos.

There are 4, 871 positive pairs and nearly 6 million

negative pairs. Fig. 7 shows some images in Public-IvS.

Although Public-IvS is not a strictly IvS dataset since

the spot photos are collected from the web, experiments

on Public-IvS have consistent results with the real-world

CASIA-IvS-Test.

Fig. 7: Example images in Public-IvS.

4.2 Experimental Settings

Preprocessing We detect faces by the FaceBox [62]

detector and localize 5 landmarks (two eyes, nose tip

and two mouth corners) by a simple 6-layer CNN [63].

All the faces are normalized by similarity transformation

and cropped to 120× 120 RGB images.

CNN Architecture For the sake of fairness, all

the CNN models in the experiments follow the same

ResNet64 architecture [22]. It has four residual blocks

and gets a 512-dimensional feature vector by average
pooling. The learning rate begins with 0.001 and is

divided by 10 when the loss does not decrease. All the

networks are trained on 4 TITANX GPUs parallelly and

the batch size is set to occupy all the GPU memory.

Specifically, the batch size is 66 in the verification scheme

and about 50 in the classification scheme.

Training Setup There are three stages in the

CVC training strategy: pre-learning by classification on

wild data, transfer learning by verification on IvS data

and fine-grained learning by large-scale classification

on IvS data. In the first stage, we train model from

scratch by the A-Softmax loss [22] on the Ms-Celeb-

1M. In the second stage, we finetune the model on

CASIA-IvS-Train with the triplet loss [8]. The triplet

loss is modified by N-pairs batch construction [26], online

hard-negative mining [8] and anchor swapping [64]. In

the third stage, we adopt the proposed DP-softmax to

finetune the model on CASIA-IvS-Train. If not specified,

there are two samples for each class in a mini-batch; the

classification layer in the third stage is initialized by the

ID-prototypes; softmax provides the probabilities and

Large-scale Bisample Learning on ID vs. Spot Face Recognition 11

A-softmax provides the gradients. In DP-softmax the

sizes of dominant queues and candidate sets are 100 and

300, respectively.

Evaluation Setup For each image, we extract

features from both the original image and the flipped one

and concatenate them as the final representation. The

score is measured by the cosine distance of two features.

We evaluate all the networks with ROC curves. The

verification rate (VR) at low false acceptance rate (FAR)

is preferred since in real application false acceptance

gives higher risks than false rejection.

4.3 Bisample Training

4.3.1 Classification-Verification-Classification (CVC)

To illustrate the effectiveness of CVC, we show the inter-

mediate results in Table 2. After the first stage, the C##

is a well trained model in wild scenarios, with 99.53%
on LFW [65] and 90.38% at FAR= 10−6 on Megaface

challenge [13]. However the state-of-the-art face model

cannot work well on CASIA-IvS-Test, indicating the

large bias between the two scenarios. Second, after being

finetuned on CASIA-IvS-Train with the triplet loss, the

CV# achieves much better performance, indicating the

knowledge is successfully transferred from wild scenarios

to IvS scenarios. Finally, the large-scale classification

on CASIA-IvS-Train further improves the performance

and reaches 91.92% at FAR=10−5.

To further analyze the impact of each stage, we per-

form an ablation study by removing some stages. First,

in ##C we directly perform large-scale classification

on IvS data without any initialization and find the loss

does not decrease after 200, 000 iterations. Second, we

try to train model from scratch by the triplet loss on IvS

data. Since the learning task is challenging without any

initialization, we begin without hard-negative mining

and slightly increase the ratio of hard negatives. The

training converges but the model #V# has a bad result.

Thirdly, we pre-train the model on wild data and directly

finetune it on IvS data by large-scale classification. The

training successfully converges but the resultant C#C

is worse than the complete CVC. Finally, after pre-

training on wild data, we perform joint verification and

large-scale classification on IvS data, yielding the C(VC)

model, which is also inferior than the complete CVC.

From the results we can conclude that: (1) Comparing

##C, C#C and CVC, a good initialization is crucial for

the large-scale classification on bisample data. (2) Com-

paring C#C, CV# and CVC, the verification scheme has

higher scalability than the classification scheme when

dealing with large-scale bisample data, but it cannot get

satisfactory performance independently. (3) Comparing

C#C, C(VC) and CVC, the smoothness is important

in knowledge transferring and it is better to bridge the

two classification stages with a verification stage.

There are some interesting phenomena we have ob-

served in CVC learning. First, we find that the wild

performance in the first stage does not affect the final

IvS performance much. We begin with two pre-trained

models with different wild performance (98.0% on LFW

with triplet loss and 99.53% with A-softmax) and find

their final IvS performances differ slightly (91.23% vs.

91.92% at FAR= 10−5 on IvS). Second, we find the

model cannot keep its high wild performance after being

finetuned on IvS data. We evaluate models on both

CASIA-IvS-Test and LFW [66], shown in Table 3. After

each stage of CVC, the IvS performance is improved at

the cost of degenerated wild performance. We further

train our model on the joint data from both scenarios

and find the wild performance is greatly improved with

slight drop in IvS. This joint training is a good strategy

when both scenarios are concerned.

Methods
CASIA-IvS-Test LFW-BLUFR

(VR@FAR=10−5) (VR@FAR=10−5)
C## 51.90 94.23
CV# 83.23 86.38
CVC 91.92 80.71

CVC+ 89.96 90.81

Table 3: The performances in wild scenarios (LFW-

BLUFER protocol [66]) and IvS scenarios (CASIA-IvS-

Test) after each stage CVC. The CVC+ means the final

large-scale classification stage is performed on the joint

data from both Ms-Celeb-1M and CASIA-IvS-Train.

4.3.2 Prototype Construction

As introduced in Section 3.2, there are two ways to

construct the prototypes in large scale classification: The

ID-prototype is the feature of the ID photo and the avg-
prototype is the average vector of all the features in this

class. The way to construct prototypes depends on the

loss function involved. We select the most representative

softmax [16] and the state-of-the-art A-softmax [22] in

this experiment. Table 4 shows the performances with

different losses and prototypes.

When softmax is adopted, the model initialized by

avg-prototypes almost converges in the beginning and

the loss only produces small gradients. If we replace avg-

prototypes with ID-prototypes, the softmax loss will

have a larger initial loss and end up with better results.

When A-softmax is adopted, the angular margin keeps

the initial loss large enough and the two prototypes

12 Xiangyu Zhu∗ et al.

Method
Procedure Performance

Classification Verification Classification
VR@FAR=10−3 VR@FAR=10−4 VR@FAR=10−5

(A-Soft on MS) (Triplet on IvS) (DP-Soft on IvS)
C## X 85.31 69.11 51.90
CV# X X 96.41 91.39 83.23
CVC X X X 97.70 96.17 91.92

##C X not converge
#V# X 79.39 58.90 38.33
C#C X X 94.36 85.35 72.35

C(VC) X X X 96.43 91.75 82.80

Table 2: The intermediate results after each stage in the CVC training strategy. The performance is evaluated by

the verification rate, VR(%), on CASIA-IvS-Test. In each stage, we indicate the loss function and the training

data, where A-Soft refers to A-softmax, Triplet refers to triplet loss, DP-Soft refers to DP-softmax, MS refers to

Ms-Celeb-1M and IvS refers to CASIA-IvS-Train. The “#” in method names indicates the corresponding stage is

skipped.

Method FAR=10−3 FAR=10−4 FAR=10−5

softmax (avg) 96.94 93.55 87.13
softmax (ID) 97.31 94.91 89.55

A-softmax (avg) 97.35 95.40 90.30
A-softmax (ID) 97.43 95.40 90.34

Table 4: The comparison of different prototype construc-

tion methods with different loss functions on CASIA-

IvS-Test, evaluated by VR(%) at different FAR. The

prototypes are randomly selected.

end up with close performances. In our experiments,

we prefer ID-prototypes and only adopt avg-prototypes
when there is no ID photo like the mimic experiments

in Sec. 4.7.

4.4 Large-scale Classification

In large-scale classification, we need to select a fraction

of prototypes each time. In Sec. 3.3 we introduce two

methods for prototype selection: one is to select proto-

types randomly and the other is to select the dominant

prototypes.

4.4.1 Random Prototype Softmax

In random prototype softmax (RP-softmax), we can

increase the involved classes at a small cost of batch size

due to the tiny memory cost of a single prototype. We

evaluate the RP-softmax with 20k, 50k and 100k proto-

types respectively in Table 5 and find more prototypes

always come with better performance.

However, increasing the number of prototypes is

not cost free. More prototypes increase the overhead of

computing softmax and copying prototypes in GPUs.

In Fig. 8, we show the time costs and GPU-util percent

with different prototype numbers. When prototypes

Method FAR=10−3 FAR=10−4 FAR=10−5

RPS(20k) 97.19 94.49 87.84
RPS(50k) 97.19 94.71 88.57
RPS(100k) 97.43 95.40 90.34

Table 5: The performance of RP-softmax (RPS) on

CASIA-IvS-Test, evaluated by VR(%) at different FAR.

The values in the brackets are the numbers of prototypes.

Fig. 8: The total training time (forward and backward

propagation) of one mini-batch and the GPU-util

percent with different prototype numbers. Low GPU-util

percent means the GPU is blocked to wait for prototype
copying.

increase from 20k to 100k, the training time increases

by 78% and the GPU-util percent drops from 82% to

62%. We further try 300k prototypes and find the GPU-

util percent drops to 48%, which means most time is

spent on waiting for prototype copying.

4.4.2 Dominant Prototype Softmax

To improve performance and training efficiency simul-

taneously, we select the dominant prototypes instead

Large-scale Bisample Learning on ID vs. Spot Face Recognition 13

Fig. 9: The total training time (forward and backward

propagation) of one mini-batch with different dominant

queue size.

of the random prototypes. In DP-softmax we maintain

a dominant queue for each class to store their similar

classes, where the queue size q is an important parameter

that impacts both performance and training time. Ta-

ble 6 shows the performances with different queue sizes

and Fig. 9 shows the corresponding training time. We

can see that the performance increases as the queue size

increases, but quickly saturates when q reaches 100 with

only 3, 000 prototypes. Considering both performance

and efficiency we set q = 100 in our implementation.

Compared with RP-softmax with 100, 000 prototypes,

DP-softmax achieves better performance (91.92% vs.

90.30% at FAR=10−5) with much lower training time

(1.1s vs. 1.6s per iteration).

Method FAR=10−3 FAR=10−4 FAR=10−5

DPS10(0.3k) 96.62 92.48 85.12
DPS20(0.6k) 96.77 93.69 86.57
DPS50(1.5k) 97.16 94.37 88.29
DPS100(3.0k) 97.70 96.17 91.92
DPS300(10.0k) 97.72 96.27 92.01

Table 6: The performances of DP-softmax (DPS) with

different queue sizes on CASIA-IvS-Test, evaluated by

VR(%) at different FAR. DPSq(Niter) indicates the

queue size is q and the number of prototypes is Niter.

Note that there are two samples per class in the mini-

batch, there are at most Mq/2 dominant prototypes.

In Table 7, we also compare the performances with

and without queue updating, which demonstrates the

effectiveness of queue updating.

4.4.3 Softmax Formulation

Large-scale classification mainly involves a prototype

selection strategy, which can be combined with any soft-

Method FAR=10−3 FAR=10−4 FAR=10−5

w/o update 97.54 95.58 90.77
update 97.70 96.17 91.92

Table 7: The performances of DP-softmax with and with-

out queue updating, evaluated by VR(%) at different

FAR.

max formulation. Besides the traditional softmax [16],

the state-of-the-art A-softmax [22] and AM-softmax [24]

can also be adopted. Table 8 shows the results with

different softmax formulations. We can see that A-

softmax and AM-softmax have improved performance

by introducing the margins and A-softmax has the best

results.

Method FAR=10−3 FAR=10−4 FAR=10−5

DPS+softmax 97.31 94.91 89.55
DPS+AM-softmax 97.60 95.59 90.73
DPS+A-softmax 97.70 96.17 91.92

Table 8: The performances of adopting different softmax

formulations in large-scale classification, evaluated by

VR(%) at different FAR on CASIA-IvS-Test. The

dominant prototype selection (DPS) is adopted.

4.5 Identity Volume

It has been repeatedly observed that more data always
delivers better performance [8,67]. Does the blessing of

data still exist in IvS face recognition? To study this,

we randomly sample a subset of 100k, 500k and 2M

identities from CASIA-IvS-Train and train the model,

respectively. As shown in Fig. 10, the performance grows

logarithmically as identities increase, which is consistent

with [67]. We believe more identities provide more infor-

mation about intra- and inter-variations, which delivers

more discriminative features. Besides, it is suggested

that the model can be further improved with more IvS

data.

4.6 Comparison Experiments

In order to compare our method with the state of the

arts, we choose several methods feasible on large-scale

bisample data, including Contrastive [7], Triplet [8],

Lifted Struct [25], N-pairs [26] and the Model A-

D in Megaface challenge [13] (MF-A to MF-D). We

also evaluate the large-scale classification methods in

language models including Noise Contrastive Estimation

(NCE) [47] and Hierarchical Softmax (H-softmax) [50].

14 Xiangyu Zhu∗ et al.

Fig. 10: The performances under different identity

volume, evaluated by VR(%) at FAR=10−5.

For fair comparison, all the methods adopt the ResNet64

architecture and their models are pretrained on Ms-

Celeb-1M. In our implementation, for contrastive, each

sample is paired with all the other ones in a mini-batch
and the negative pairs are filtered by hard negative

mining. For triplet, we adopt N-pairs batch construc-

tion [26] and anchor swapping [64] to construct the most

triplets. Besides, online hard mining [8] is performed to

remove easy triplets. For N-pairs, we adopt the N-pair-
mc loss to optimize each positive pair against all the

related negative pairs and use the hard negative class

mining to generate mini-batches with similar classes.

For lifted struct, we directly use the released codes. For

MF-A, we train the model with softmax on randomly
selected 100, 000 classes. Then we finetune MF-A on

the full data with the triplet loss as MF-B. For MF-C,

we adopt the rotating softmax where 20, 000 random

classes are selected in each epoch. Then we adopt the

same triplet finetuning strategy to get MF-D. For NCE

and H-softmax, directly training with the two losses

cannot converge. In our implementation, we first train

the models by the triplet loss and initialize the pro-

totypes by the deep features as our LBL, making the

training convergent. For our methods, we first provide

a naive baseline to perform softmax on IvS data named

LBL(softmax), where in the final stage of CVC we train

model only on 100, 000 classes (which are the most

classes affordable by the machine) and the classes do

not change as training proceeds. Besides, we report LBL

with RP-softmax and DP-softmax.

Table. 9 shows the performances on the real-world

CASIA-IvS-Test and the open Public-IvS. Fig. 11(a)

and Fig. 11(b) show the corresponding ROC curves.

During implementation, we find MF-A cannot achieve

satisfactory performance since only a small part of

data can be used. MF-C is hard to converge since the

rotating softmax randomly initializes the prototypes

periodically. After finetuned by the triplet loss on all

the data, the models (MF-B and MF-D) still fail to

get satisfactory performances due to the poor initializa-

tions. As for our method LBL, we can see Public-IvS

shows consistent results with CASIA-IvS-Test where

our methods perform best. Besides, LBL significantly

outperforms other methods on IvS data, especially at

low FAR. The improvement at FAR=10−5 is 84.16% to

91.92% on CASIA-IvS-Test and 88.63% to 93.62% on

Public-IvS. The DP-softmax further improves the RP-

softmax and achieves the best performance. LBL also

achieves better recognition rates than the large scale
classification methods in language models like NCE and

H-softmax.

4.7 Mimic Experiments on Megaface-bisample

To make our work reproducible, we mimic the large-

scale bisample challenge on the open MF2 [13] dataset

and propose a new protocol Megaface-bisample. The

MF2 contains 657, 559 identities which are much more
than other datasets. We split MF2 into two subsets,

MF2-thick and MF2-mini. The MF2-thick contains the

identities having more than 15 samples, which is used

to simulate the well-posed dataset for pre-learning. The

MF2-mini contains two randomly selected samples for

each identity, which is used to simulate the bisample
data. As for testing, we follow the BLUFR protocol [66]

on LFW [65]. In summary, MF2-thick, MF2-mini and

LFW-BLUFR simulate Ms-Celeb-1M, CASIA-IvS-Train

and CASIA-IvS-Test, respectively. Specifically, MF2-

thick has 46, 000 identities and 34.8 samples per identity

and MF2-mini has cleaned 649, 790 identities and 2
samples per identity, whose image list will be released.

As well known, MF2 has few celebrities and we have

tried our best to ensure there is no identity overlap

between MF2 and LFW. Although Megaface-bisample

is not IvS data, it shares the same challenges: the weak

intra-variations and model training scalability, as IvS

data. Since there is no ID photo in MF2, we initialize the

classification layer with avg-prototypes and construct
the NCK by avg-prototypes instead of ID features.

First, to verify the effectiveness of the simulation,

we re-implement the experiments of Table. 2 about the

CVC training strategy. As shown in Fig. 12, there is

significant improvement after each stage. Besides, we try

to train model from scratch on MF2-mini and find the

training quickly falls into bad local optima. Since the

results are consistent with the ones on CASIA-IvS, we

believe Megaface-bisample can well simulate our task.

On Megaface-bisample we also compare our methods

with the state of the arts in Table. 10, whose ROC

curves are shown in Fig. 11(c). The proposed LBL still

Large-scale Bisample Learning on ID vs. Spot Face Recognition 15

Method
CASIA-IvS-Test Public-IvS

FAR=10−3 FAR=10−4 FAR=10−5 FAR=10−3 FAR=10−4 FAR=10−5

Contrastive [7] 96.25 91.17 81.39 96.52 91.71 84.54
Triplet [8] 96.41 91.39 83.23 97.72 94.11 87.47

Lifted Struct [25] 96.42 92.25 83.53 98.03 94.56 88.63
N-pairs [26] 96.45 92.13 83.96 98.23 94.57 86.49

NCE [47](Triplet-init) 96.30 91.18 82.62 97.90 93.93 87.27
H-softmax [50](Triplet-init) 96.50 92.36 84.16 98.01 94.54 87.45

MF-A [13] 51.61 33.82 20.67 49.42 28.40 14.99
MF-B [13] 75.24 53.85 35.09 66.68 44.40 28.66
MF-C [13] 51.02 31.11 15.05 43.41 24.20 12.55
MF-D [13] 75.04 52.46 31.84 64.68 42.85 25.23

LBL(softmax) 97.01 93.69 86.68 98.38 95.49 89.63
LBL(RP-softmax) 97.43 95.40 90.34 98.44 96.29 91.99
LBL(DP-softmax) 97.70 96.17 91.92 98.83 97.21 93.62

Table 9: The performances of the state of the arts, evaluated by the VR(%) at different FAR. The models are

trained on CASIA-IvS-Train and evaluated on CASIA-IvS-Test and Public-IvS, with our method and the best

baseline highlighted.

(a) CASIA-IvS-Test (b) Public-IvS (c) Megaface-bisample

Fig. 11: Comparison of ROC curves on CASIA-IvS-Test, Public-IvS and Megaface-bisample. The values in the

brackets are the VR(%) at FAR=10−5.

Fig. 12: The intermediate results of CVC, following the

Megaface-bisample protocol.

consistently outperforms the other methods and the

improvement at FAR= 10−5 is over 8 percent.

Methods
LFW-BLUFR

FAR=10−3 FAR=10−4 FAR=10−5

Contrastive [7] 93.74 82.53 63.75
Triplet [8] 93.54 82.63 65.06

Lifted Struct [25] 90.50 75.46 53.45
N-pairs [26] 90.16 73.40 50.30

LBL(DP-softmax) 95.68 88.03 73.86

Table 10: The verification rates, VR(%), at different false

acceptance rates (FAR) on LFW-BLUFR following the

Megaface-bisample, with the top-2 results highlighted.

5 Conclusion

This paper proposes a large-scale bisample learning

(LBL) method to train deep neural networks on ID

vs. Spot (IvS) face data. Specifically, we develop a

Classification-Verification-Classification (CVC) bisam-

ple training strategy that first transfers the knowledge

from wild scenarios to IvS scenarios and then boosts

the performance by large-scale classification. We also

propose a dominant prototype softmax (DP-softmax)

16 Xiangyu Zhu∗ et al.

to perform 2-million classification, which is used in the

final stage of CVC. The DP-softmax diligently selects

the dominant prototypes for each mini-batch, which

improves the performance and reduces the training

cost simultaneously. Experiments on a large real-world

dataset show the proposed LBL significantly improves

the IvS face recognition and the DP-softmax can per-

form effective classification with only 0.15% of classes.

Besides, we also release a Public-IvS dataset for open

IvS evaluation and a new protocol Megaface-bisample

to mimic the large-scale bisample learning task.

6 Acknowledgments

This work was supported by the Chinese National Natu-

ral Science Foundation Projects #61876178, #61806196,

the National Key Research and Development Plan (Grant

No.2016YFC0801002), and AuthenMetric R&D Funds.

Zhen Lei is the corresponding author.

References

1. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in International Conference on Neural Information Pro-
cessing Systems, 2012, pp. 1097–1105.

2. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2015.

3. K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

4. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wo-
jna, “Rethinking the inception architecture for computer
vision,” computer vision and pattern recognition, pp. 2818–
2826, 2016.

5. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” computer vision and
pattern recognition, pp. 770–778, 2016.

6. Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deep-
face: Closing the gap to human-level performance in face
verification,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2013, pp. 1701–
1708.

7. Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning
face representation by joint identification-verification,” in
Advances in neural information processing systems, 2014,
pp. 1988–1996.

8. F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 815–823.

9. E. Smirnov, A. Melnikov, S. Novoselov, E. Luckyanets,
and G. Lavrentyeva, “Doppelganger mining for face
representation learning,” in International Conference on
Computer Vision, 2017.

10. C. Huang, C. C. Loy, and X. Tang, “Local similarity-
aware deep feature embedding,” in Advances in Neural
Information Processing Systems, 2016, pp. 1262–1270.

11. W. Chen, X. Chen, J. Zhang, and K. Huang, “Beyond
triplet loss: a deep quadruplet network for person re-
identification,” in The Conference on Computer Vision
and Pattern Recognition, 2017.

12. D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face
representation from scratch,” arXiv: Computer Vision
and Pattern Recognition, 2014.

13. A. Nech and I. Kemelmacher-Shlizerman, “Level playing
field for million scale face recognition,” arXiv preprint
arXiv:1705.00393, 2017.

14. Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-
celeb-1m: A dataset and benchmark for large-scale face
recognition,” in European Conference on Computer
Vision. Springer, 2016, pp. 87–102.

15. Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman,
“Vggface2: A dataset for recognising faces across pose and
age,” arXiv preprint arXiv:1710.08092, 2017.

16. Y. Sun, X. Wang, and X. Tang, “Deep learning face repre-
sentation from predicting 10,000 classes,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013, pp. 1891–1898.

17. Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Web-
scale training for face identification,” arXiv preprint
arXiv:1406.5266, 2014.

18. Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative
feature learning approach for deep face recognition,” in
European Conference on Computer Vision. Springer,
2016, pp. 499–515.

19. R. Ranjan, C. D. Castillo, and R. Chellappa, “L2-
constrained softmax loss for discriminative face verifi-
cation,” arXiv preprint arXiv:1703.09507, 2017.

20. F. Wang, X. Xiang, J. Cheng, and A. L. Yuille, “Normface:
l 2 hypersphere embedding for face verification,” arXiv
preprint arXiv:1704.06369, 2017.

21. W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin
softmax loss for convolutional neural networks.” in ICML,
2016, pp. 507–516.

22. W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song,
“Sphereface: Deep hypersphere embedding for face recogni-
tion,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017.

23. W. Liu, Y.-M. Zhang, X. Li, Z. Yu, B. Dai, T. Zhao, and
L. Song, “Deep hyperspherical learning,” in Advances in
Neural Information Processing Systems, 2017, pp. 3953–
3963.

24. F. Wang, W. Liu, H. Liu, and J. Cheng, “Additive margin
softmax for face verification,” Signal Processing Letters,
IEEE, vol. 25, pp. 926–930, 2018.

25. H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep
metric learning via lifted structured feature embedding,”
in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4004–4012.

26. K. Sohn, “Improved deep metric learning with multi-class
n-pair loss objective,” in Advances in Neural Information
Processing Systems, 2016, pp. 1857–1865.

27. Y. Zhao, Z. Jin, G. Qi, H. Lu, and X. Hua, “A principled
approach to hard triplet generation via adversarial nets,”
in European Conference on Computer Vision, 2018.

28. V. B. Kumar, B. Harwood, G. Carneiro, I. Reid, and
T. Drummond, “Smart mining for deep metric learning,”
arXiv preprint arXiv:1704.01285, 2017.

29. C. Wang, X. Zhang, and X. Lan, “How to train triplet
networks with 100k identities?” arXiv preprint arX-
iv:1709.02940, 2017.

Large-scale Bisample Learning on ID vs. Spot Face Recognition 17

30. X. Wu, R. He, Z. Sun, and T. Tan, “A light cnn for deep
face representation with noisy labels,” arXiv preprint
arXiv:1511.02683, 2015.

31. X. Zhang, Z. Fang, Y. Wen, Z. Li, and Y. Qiao, “Range loss
for deep face recognition with long-tailed training data,” in
The IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

32. L. Feifei, R. Fergus, and P. Perona, “One-shot learning
of object categories,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 4, pp.
594–611, 2006.

33. G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese
neural networks for one-shot image recognition,” in ICML
Deep Learning Workshop, vol. 2, 2015.

34. A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra,
and T. P. Lillicrap, “One-shot learning with memory-
augmented neural networks,” arXiv: Learning, 2016.

35. J. Weston, S. Chopra, and A. Bordes, “Memory networks,”
arXiv preprint arXiv:1410.3916, 2014.

36. O. Vinyals, C. Blundell, T. P. Lillicrap, K. Kavukcuoglu,
and D. Wierstra, “Matching networks for one shot
learning,” neural information processing systems, pp.
3630–3638, 2016.

37. Y. X. Wang and M. Hebert, Learning to Learn: Model
Regression Networks for Easy Small Sample Learning.
Springer International Publishing, 2016.

38. L. Bertinetto, J. F. Henriques, J. Valmadre, P. H. S. Torr,
and A. Vedaldi, “Learning feed-forward one-shot learners,”
neural information processing systems, pp. 523–531, 2016.

39. Y. Guo and L. Zhang, “One-shot face recognition by
promoting underrepresented classes,” arXiv preprint
arXiv:1707.05574, 2017.

40. B. Hariharan and R. Girshick, “Low-shot visual recog-
nition by shrinking and hallucinating features,” arXiv
preprint arXiv:1606.02819, 2016.

41. Z. Chen, H. Zhao, X. Liu, and W. Xu, “An analysis of
feature regularization for low-shot learning,” 2016.

42. J. Choe, S. Park, K. Kim, J. Hyun Park, D. Kim,
and H. Shim, “Face generation for low-shot learning
using generative adversarial networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 1940–1948.

43. Z. Xu, L. Zhu, and Y. Yang, “Few-shot object recogni-
tion from machine-labeled web images,” arXiv preprint
arXiv:1612.06152, 2016.

44. J. Yang, B. Price, S. Cohen, and M. H. Yang, “Context
driven scene parsing with attention to rare classes,” in
IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 3294–3301.

45. W. Ouyang, X. Wang, C. Zhang, and X. Yang, “Factors
in finetuning deep model for object detection with long-
tail distribution,” in Computer Vision and Pattern
Recognition, 2016, pp. 864–873.

46. D. J. Hsu, S. M. Kakade, J. Langford, and T. Zhang,
“Multi-label prediction via compressed sensing,” in Ad-
vances in neural information processing systems, 2009,
pp. 772–780.

47. M. Gutmann and A. Hyvärinen, “Noise-contrastive
estimation: A new estimation principle for unnormalized
statistical models,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and
Statistics, 2010, pp. 297–304.

48. A. Choromanska, A. Agarwal, and J. Langford, “Extreme
multi class classification,” in NIPS Workshop: eXtreme
Classification, submitted, 2013.

49. Y. Prabhu and M. Varma, “Fastxml: A fast, accurate
and stable tree-classifier for extreme multi-label learning,”

in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM, 2014, pp. 263–272.

50. Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A
neural probabilistic language model,” Journal of machine
learning research, vol. 3, no. Feb, pp. 1137–1155, 2003.

51. R. Babbar and B. Schölkopf, “Dismec: distributed sparse
machines for extreme multi-label classification,” in Pro-
ceedings of the Tenth ACM International Conference on
Web Search and Data Mining. ACM, 2017, pp. 721–729.

52. K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain, “Sparse
local embeddings for extreme multi-label classification,”
in Advances in Neural Information Processing Systems,
2015, pp. 730–738.

53. Y. Tagami, “Annexml: Approximate nearest neighbor
search for extreme multi-label classification,” in Proceed-
ings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2017,
pp. 455–464.

54. C. Xu, D. Tao, and C. Xu, “Robust extreme multi-label
learning,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining. ACM, 2016, pp. 1275–1284.

55. A. Mnih and Y. W. Teh, “A fast and simple algorithm
for training neural probabilistic language models,” arXiv
preprint arXiv:1206.6426, 2012.

56. A. Mnih and K. Kavukcuoglu, “Learning word embed-
dings efficiently with noise-contrastive estimation,” in
Advances in neural information processing systems, 2013,
pp. 2265–2273.

57. A. Vaswani, Y. Zhao, V. Fossum, and D. Chiang, “De-
coding with large-scale neural language models improves
translation,” in Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, 2013,
pp. 1387–1392.

58. H. Wang, Y. Wang, Z. Zhou, X. Ji, and W. Liu, “Cosface:
Large margin cosine loss for deep face recognition,” in
Computer Vision and Pattern Recognition (CVPR), 2018
IEEE Conference on. IEEE, 2018.

59. E. Zhou, Z. Cao, and Q. Yin, “Naive-deep face recognition:
Touching the limit of lfw benchmark or not?” arXiv
preprint arXiv:1501.04690, 2015.

60. O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face
recognition.” in BMVC, vol. 1, no. 3, 2015, p. 6.

61. http://baike.baidu.com/.
62. S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z.

Li, “Faceboxes: a cpu real-time face detector with high
accuracy,” arXiv preprint arXiv:1708.05234, 2017.

63. Z.-H. Feng, J. Kittler, M. Awais, P. Huber, and X.-J.
Wu, “Wing loss for robust facial landmark localisation
with convolutional neural networks,” arXiv preprint
arXiv:1711.06753, 2017.

64. V. Balntas, E. Riba, D. Ponsa, and K. Mikolajczyk,
“Learning local feature descriptors with triplets and shallow
convolutional neural networks,” in British Machine Vision
Conference, 2016, pp. 119.1–119.11.

65. G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller,
“E.: Labeled faces in the wild: A database for studying
face recognition in unconstrained environments,” 2007.

66. S. Liao, Z. Lei, D. Yi, and S. Z. Li, “A benchmark study
of large-scale unconstrained face recognition,” in IEEE
International Joint Conference on Biometrics, 2014, pp.
1–8.

67. C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisit-
ing unreasonable effectiveness of data in deep learning era,”
in Computer Vision (ICCV), 2017 IEEE International
Conference on. IEEE, 2017, pp. 843–852.

http://baike.baidu.com/

	Introduction
	Related Works
	Large-scale Bisample Learning
	Experiments
	Conclusion
	Acknowledgments

